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Abstract—In recent years, data broadcasting has become a promising technique in designing a mobile information system with power

conservation, high scalability, and high bandwidth utilization. However, prior research topics in data broadcasting are mainly based on

the assumption that the disseminated data items are of the same size. Motivated by the fact that various kinds of data objects may be

disseminated in advanced information systems, we explore in this paper the problem of generating broadcast programs in a

heterogeneous data broadcasting environment, in which disseminated data items can be of different sizes. Given the broadcast

database and the number of channels, we first derive the analytical model of the heterogeneous data broadcasting to obtain the

average waiting time of mobile users and prove the allocation problem as an NP-complete problem. In order to solve such problem, we

propose a two-phase architecture to perform channel allocation. Algorithm Dimension Reduction Partitioning (DRP) is employed to

perform rough allocation to derive the satisfactory solutions, whereas mechanism Cost-Diminishing Movement Selection (CDMS) is

used for fine allocation to achieve local optimum solutions. In addition to the two-phase architecture, we also propose algorithm

GA-CDMS according to the concept of hybrid genetic algorithm for comparison purposes. GA-CDMS can perform global search more

accurately and efficiently than the conventional genetic algorithm GA, and the suboptimum that GA-CDMS achieves will be very close

to the optimal solution. In order to validate the two-phase allocation algorithm DRP-CDMS, several experiments are conducted. In

these experiments, we consider the important issues such as accuracy, scalability, diversity and efficiency. From the experimental

results, we show that the proposed two-phase channel allocation is very practical in performing an effective channel allocation with

high efficiency in a heterogeneous broadcasting environment.

Index Terms—Data broadcasting, data dissemination, multiple channels, heterogeneous data size.

Ç

1 INTRODUCTION

THE advance in wireless communication enables users to
access information anytime, anywhere, via laptops,

PDAs, and smart phones. In addition to conventional text-
based information like weather forecast and stock informa-
tion, an information system provides modern information
services, including Web browsing and multimedia access.
In order to provide better services for mobile users,
researchers have encountered and are endeavoring to
overcome challenges in various research areas such as
mobile data dissemination [1], location-dependent data
management [2], pervasive computing [3], and so on.

Data broadcasting is a well-known technique to
disseminate data items from an information system to
mobile users. In a broadcast-based (i.e., push-based)
information system, as shown in Fig. 1, the server
generates a broadcast program by collecting the access
patterns of mobile users and broadcasts data items

periodically via multiple channels. The period of each
broadcast channel is viewed as a broadcast cycle. To
retrieve a data item, users with mobile devices should
listen and wait for the data of interest to appear on the
broadcast channel. The average waiting time is composed
of two components: the probing time and the downloading
time. The analytical model is described as follows:
Consider that N data items with size z are broadcast
periodically via a broadcast channel with bandwidth b.
The probing time, Wprobe, is the time that a user should
wait until the item of interest appears in the channel, and
thus, Wprobe ¼ 1

2 ðbroadcast cycle timeÞ ¼ Nz
2b . The download-

ing time, Wdownload, is the time that a user should spend for
downloading the data item via the broadcast channel, i.e.,
Wdownload ¼ z=b. Therefore, the average waiting time can be
formulated as Wb ¼Wprobe þWdownload ¼ Nz

2b þ z
b .

There are many research topics in generating the broad-
cast programs to broadcast data items via multiple broad-
cast channels [4], [5], [6], [7], [8], [9], [10]. A flat broadcast
program, in which the items are allocated to broadcast
channels with equal appearance frequencies, is a straight-
forward way for broadcasting. However, this approach is
ineffective since the expected waiting time of data items
with different access probabilities is the same. In order to
overcome the effectiveness problem, approaches are pro-
posed in [4], [8], and [9] to generate broadcast programs in
which the expected waiting time of popular data items (i.e.,
with higher access probabilities) is shorter than that of
unpopular data items (i.e., with lower access probabilities).
In addition to providing basic services for mobile users,
there are also many extensions of the broadcast technique.
The works in [5] and [7] focus on broadcasting dependent
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data for ordered and unordered queries. Moreover, the
broadcast program allows a data item to appear in different
broadcast channels simultaneously. Such a replication issue
is addressed in [11].

Most of the broadcasting schemes in prior research are
based on the assumption that each disseminated items are
of the same size. However, in the advanced communication
environment with larger bandwidth, the mobile users can
use their devices with higher capability to access various
kinds of information such as still image, video, and audio.
Therefore, the data items with different sizes will inevitably
be disseminated in a modern information system. Since the
effect of item size is neglected, the dissemination policies
based on conventional models may suffer from effective-
ness issues in a modern information system. To differentiate
our work from those in the conventional broadcasting
environment, we use the term heterogeneous data broad-
casting1 to describe the broadcast environment in which the
data items with different sizes are disseminated. In such
environments, each data item contains two attributes, the
access probability and the item size. In this paper, we focus
on generating broadcast programs in a heterogeneous data
broadcasting environment. Although the broadcast pro-
gram may also be generated according to the ready-made
techniques proposed for video-on-demand service such as
pyramid broadcasting [13], [14], [15], this technique neglects
the access probability of each video object. Moreover,
pyramid broadcasting only performs well in playing the
video sequence continuously. These intrinsic discrepancies
make it difficult to apply pyramid broadcasting to dissemi-
nating the items in the heterogeneous data broadcasting
environment. In generating the broadcast program in the
heterogeneous environment, there are three major contribu-
tions in this paper: First, we derive the analytical model of
average waiting time in heterogeneous broadcasting environ-
ments. Next, we propose an efficient two-phase architecture
to generate a local-optimal broadcast program in a hetero-
geneous environment. Moreover, a hybrid genetic algorithm,
which achieves global optimization, is also proposed for
comparison purposes.

In this paper, we first derive the analytical model of
heterogeneous data broadcasting in a multiple-channel
environment. Given a specific channel allocation, the
average waiting time can be determined according to the
access probability and the size of each data item. By
observing the analytical model, the allocation problem will
be transformed to a grouping problem with a specific cost
function. We next propose an efficient method to perform
channel allocation (i.e., grouping) for each data item. This
method is named DRP, standing for Dimension Reduction
Partitioning. Algorithm DRP is a top-down group-splitting
approach, in which the two-dimensional grouping problem
is simplified as a one-dimensional partitioning problem. In
addition, a Cost-Diminishing Movement Selection (CDMS)
mechanism is proposed to refine the effectiveness to the
local optimum. In essence, CDMS is executed iteratively. In
each iteration, mechanism CDMS checks the possible
moving operations for a certain data item from one group
to another and determines the best choice. Mechanism
CDMS will keep executing until the local optimum is
achieved, where no moving operation will lead to the cost
reduction. More specifically, what we propose in this paper
can be viewed as a two-phase allocation scheme. Algorithm
DRP provides rough allocation, which achieves satisfactory
quality, whereas mechanism CDMS provides fine allocation,
which achieves the local optimum by refining the results of
the rough allocation. Moreover, owing to the iterative
property of CDMS, there will be a progressive improvement
before the local optimum is reached.

In addition to the above two-phase channel allocation
algorithms, we also propose an algorithm called GA-CDMS
for comparison purposes. Algorithm GA-CDMS is a hybrid
genetic algorithm, which combines the concept of genetic
algorithm [16], [17] and the proposed mechanism CDMS.
Unlike the two-phase algorithm, GA-CDMS can perform
stochastic search globally in optimizing the broadcast
program. GA-CDMS solves the heterogeneous broadcasting
problem in two levels. In the chromosome level, solutions of
channel allocation are encoded as chromosomes with
corresponding fitness values. By executing the operations
such as selection, crossover, and mutation, the chromosomes
with higher fitness values will have better chances to survive
and evolve after each generation. As for the solution level,
chromosomes will be decoded as solutions of channel
allocation. Mechanism CDMS will refine each solution until
the local optimum is reached. The most advantageous
feature is that the search space of GA-CDMS is bound by all
local optimal solutions. Unlike the conventional genetic
algorithm GA in which the searching space contains all
possible solutions, GA-CDMS will reach more preferable
allocation results within a lower execution time.

To verify the effectiveness and efficiency of the two-
phase channel allocation algorithms, several experiments
are conducted. First, we compare the performances of the
hybrid genetic algorithm with the simple genetic algorithm.
By inspecting the expected waiting time and the standard
deviation from the outcomes with different initial condi-
tions, we observe that the hybrid genetic algorithm will
almost achieve the global optimal solution, whereas the
simple genetic algorithm is still bound by a certain local
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Fig. 1. The architecture of broadcast-based data dissemination.

1. The term “heterogeneous” is first used in [12] to indicate the items
with different sizes.



optimum. Next, we also analyze some significant issues
such as scalability, diversity, and skewness. During the
experiments, in addition to comparing the two-phase
channel allocation to the hybrid genetic algorithm, the
algorithm adopted in the homogeneous broadcasting envir-
onment is also included for comparison. We will show that
the local optimum reached by the two-phase algorithm is
very close to the solution quality of the hybrid genetic
algorithm. In the final experiment, by measuring the
execution time, it is shown that the proposed DRP-CDMS
is more efficient than GA-CDMS. The experimental results
will show that the proposed two-phase allocation algo-
rithms have high quality and high efficiency in the
heterogeneous data broadcasting environment.

The rest of our paper is outlined as follows: In Section 2,
the related works will be reviewed. In Section 3, we will
derive the analytical model for heterogeneous data broad-
casting and formulate the allocation problem. In Section 4,
we will describe the proposed two-phase allocation algo-
rithm DRP-CDMS. In Section 5, a hybrid genetic algorithm
GA-CDMS will also be proposed for comparison purposes.
The experimental results will be shown in Section 6, and
finally, this paper will be concluded with Section 7.

2 RELATED WORKS

In the mobile computing environment characterized by the
asymmetric communication and the limited power of the
client device, the pushed-based dissemination [18] provides
scalable and preferable information service. By collecting
the access patterns, the server can provide multilevel
nonuniform dissemination according to the popularity of
each data item. Thus, in a homogeneous broadcasting
environment, popular data will be put in the channel
containing fewer items and be broadcast more frequently.

In Peng and Chen’s work [8], the problem of generating
a broadcast program was modeled as constructing a
hierarchical tree. By exploiting the feature of variant-
fanout, algorithm VFK was proposed to achieve near-
optimal allocation with low complexity. On the other hand,
Hsu et al. also developed an effective algorithm in [4] to
generate a near-optimal broadcast program. Different from
algorithm VFK , what Hsu et al. proposed is based on
Wong’s theorem [19]. In Wong’s theorem, considering data
items of equal size, the average waiting time can be
minimized if each data item is equally spaced and the
equation pi=pj ¼

ffiffiffiffi
fi
p

=
ffiffiffiffi
fj

p
is satisfied, where pi represents

the appearance probability of a certain item in the
broadcast channel, whereas fi denotes the access prob-
ability of the item. As for the optimal broadcast program in
the homogeneous environment, it can be generated accord-
ing to the concept of dynamic programming [20], the related
detail can be found in [9].

In some applications, the data items that a mobile user
requests may have dependency with each other. In order to
broadcast dependent data, Martinez et al. designed a
framework to generate the broadcast program for a single
channel based on the concept of a hill climbing algorithm [21].
In Martinez et al.’s work, the numbers of initial random
permutations that specify the broadcast sequences are
generated. According to the initial permutation, the

neighboring permutations will be searched repeatedly until
no improvement is made in a certain number of attempts.
The authors in [22] proposed a greedy algorithm to solve the
dependent data broadcasting problem for a single channel.
In view of the poor performance of adopting a greedy
algorithm for multiple channels, Huang and Chen adopted
the concept of a genetic algorithm to solve the dependent data
broadcasting problem for multiple channels [11], [5], [7].

The broadcast techniques mentioned above are based on
the assumption that the disseminated data items are of the
same size, i.e., homogeneous data broadcasting. Compared to
homogeneous data broadcasting, there is much less prior
research in the field of heterogeneous data broadcasting. In
[23], Su and Tassiulas proposed a scheduling policy for
generating a heterogeneous broadcast program in a single
push-based channel. The scheduling decision is based on the
elapsed time since the last transmission of each item. In [24]
and [25], Hammed and Vaidya proposed the square root
rule (SSR) as a theoretical guideline in handling hetero-
geneous data broadcasting in a single channel. According to
SSR, in the optimal allocation, every item should be spaced
equally with spacing proportional to the square root of its
size and inversely proportional to the square root of its
access frequency. In addition to pushed-based dissemination,
there were several scheduling policies in a pull-based
channel proposed [12], [26], [27], [28]. Different from the
pushed-based dissemination, the pull-based dissemination is
also referred to as on-demand broadcasting [29]. Such
technique was initiated in [26], in which the homogeneous
environment was considered. In [12] and [28], the schedul-
ing policies of a heterogeneous environment were studied
based on the metric of stretch, which is defined to be the
ratio of the response time of a request to its service time. In
[27], a simplified scheduling algorithm was proposed to suit
the corresponding transcoding proxy system.

3 MODEL OF HETEROGENEOUS BROADCASTING

3.1 Analytical Model

Given a database D with its size jDj ¼ N and the number

of channels K, a broadcast program stands for an allocation

of data items in D into K channels. Each channel,

denoted by ci, contains an item set Di with its size

jDij ¼ Ni, where
PK

i¼1 Ni ¼ N , and Di \Dj ¼ f;g if i 6¼ j.
In a heterogeneous broadcasting environment, different

from the conventional (i.e., homogeneous) one, the data

may have different item sizes. Therefore, a data item d
ðiÞ
j ,

which represents the jth data item in ci, contains two

attributes, the access probability f
ðiÞ
j and the item size z

ðiÞ
j ,

where
PK

i¼1

PNi

j¼1 f
ðiÞ
j ¼1. Table 1 shows the description of

symbols used in modeling the broadcast program.

Next, we consider the average waiting time of each

channel. For the channel ci, the data items in Di are

broadcast periodically. The aggregate size of Di is
PNi

j¼1 z
ðiÞ
j .

Let b represent the bandwidth of the channel. The broadcast

cycle of ci can be derived by ð
PNi

j¼1 z
ðiÞ
j Þ=b. The average

probing time of ci is ð
PNi

j¼1 z
ðiÞ
j Þ=ð2bÞ. In addition to the

probing time, it takes z
ðiÞ
j =b to download the data item d

ðiÞ
j .
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Therefore, W
ðiÞ
j , the waiting time of the data item d

ðiÞ
j in the

channel ci, can be derived as

W
ðiÞ
j ¼

PNi

k¼1 z
ðiÞ
k

2b
þ
z
ðiÞ
j

b
: ð1Þ

Also, we can obtain the average waiting time of items in
ci, denoted as W ðiÞ, according to (1):

W ðiÞ ¼
PNi

j¼1 f
ðiÞ
j W

ðiÞ
jPNi

j¼1 f
ðiÞ
j

¼
PNi

j¼1 f
ðiÞ
j

� � PNi

j¼1 z
ðiÞ
j

� �
2b
PNi

j¼1 f
ðiÞ
j

þ
PNi

j¼1 f
ðiÞ
j z
ðiÞ
j

b
PNi

j¼1 f
ðiÞ
j

:

Therefore, the average waiting time of the broadcast
program, denoted as Wb, can be viewed as the average
value of the waiting time of each channel ci. Thus,

Wb ¼E W ðiÞ
h i

¼
XK
i¼1

XNi

j¼1

f
ðiÞ
j

 !
W ðiÞ

¼
XK
i¼1

PNi

j¼1 f
ðiÞ
j

� � PNi

j¼1 z
ðiÞ
j

� �
2b

þ
PNi

j¼1 f
ðiÞ
j z
ðiÞ
j

b

2
4

3
5

¼ 1

2b

XK
i¼1

XNi

j¼1

f
ðiÞ
j

 ! XNi

j¼1

z
ðiÞ
j

 !" #
þ 1

b

XK
i¼1

XNi

j¼1

f
ðiÞ
j z
ðiÞ
j :

ð2Þ

3.2 Problem Formulation

In this paper, given a specific database, we seek to generate

a broadcast program, which allocates each data item to a

specific channel, in such a way that Wb can be minimized.

Following (2), Wb is composed of two terms. The termPK
i¼1½ð

PNi

j¼1 f
ðiÞ
j Þð

PNi

j¼1 z
ðiÞ
j Þ� results from the effect of the

probing time, while the term
PK

i¼1

PNi

j¼1 f
ðiÞ
j z
ðiÞ
j represents the

effect of the downloading time. The second term can be

viewed as the summation of the product value of the access

probability and the size of all data items in the database D.

That is, given the database D and the number of channels

K, the second term is thus determined regardless of the

scheduling schemes employed. Moreover, the channel

bandwidth b is a constant value. Therefore, how the

broadcast program is generated only affects the termPK
i¼1½ð

PNi

j¼1 f
ðiÞ
j Þð

PNi

j¼1 z
ðiÞ
j Þ�.

In order to simplify the problem, we define a cost
function to model the first term in (2) as follows:

cost ¼
XK
i¼1

costðiÞ ¼
XK
i¼1

XNi

j¼1

f
ðiÞ
j

 ! XNi

j¼1

z
ðiÞ
j

 !" #
; ð3Þ

where costðiÞ ¼ ð
PNi

j¼1 f
ðiÞ
j Þð

PNi

j¼1 z
ðiÞ
j Þ. We can reformulate

the broadcast program generating problem as the following
grouping problem: given the database D, group the data items
in D into K different clusters so that the value of cost can be
minimized.

The grouping problem is polynomial time solvable when
the item sizes are homogeneous [9]. In the heterogeneous
case, the grouping problem is similar to the bin-packing
problem that packs objects of different size into a minimal
number of bins of fixed capacity. However, unlike the bin-
packing problem, our problem targets to minimize the
average waiting time with a fixed channel number and
unlimited channel capacity. We prove that the grouping
problem is at least an NP-complete problem in Theorem 1.

Theorem 1. The grouping problem of generating a broadcast
program in a heterogeneous data broadcasting environment is
NP-complete.

Proof. First, it is obvious that such grouping problem is NP.

Next, consider a special case when we set f
ðiÞ
j ¼ z

ðiÞ
j ¼ s

ðiÞ
j .

We can rewrite the expression in (3) as

cost ¼
XK
i¼1

XNi

j¼1

s
ðiÞ
j

 ! XNi

j¼1

s
ðiÞ
j

 !" #
¼
XK
i¼1

XNi

j¼1

s
ðiÞ
j

 !2
2
4

3
5:

The special case is exactly equal to the Minimum Sum-of-
Squares problem [30]. Since the Minimum Sum-of-
Squares problem is an NP-complete problem, the
grouping problem in generating a broadcast program
in a heterogeneous data broadcasting environment is
equivalent to an NP-complete problem. More specifi-
cally, given the existing Minimum Sum-of-Squares
problem, which is known to be NP-complete, consider
the reduction function fðxÞ ¼ x. Since each instance of the
Minimum Sum-of-Squares problem can be transformed
to an instance of the grouping problem, the NP-
completeness can thus be proved. tu
In this paper, to facilitate the description, we employ a

simplified broadcast model. However, via some extensions,
our algorithms can still be practical in a real data broad-
casting environment. The assumptions and extensions are
described as follows:

1. We assume that each mobile user knows which item
is broadcast in which channel so that he/she can
switch to a specific channel to download the item of
interest. This can be achieved by broadcasting the
index structure [6], [31], [32] in addition to the data
items. Note that the index items can be either
broadcast via separate channels or inserted in the
time slot between two consecutive items.

2. Similar to the prior research [4], [8], [9] in scheduling
mobile data items, we assume that in the broadcast
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program, the data items are without replication. It is
noted that broadcasting the items periodically
virtually has the same effect as replicating the items
in broadcast channels.

3. The access probabilities of the items are collected by
the uplink channels [12], [26]. If the uplink channel is
not available, the access probabilities can be esti-
mated via the approaches proposed in [33] and [34].

4. Like [18], we assume that the access probabilities are
static, i.e., the access probability of an item will not
change over time. For dynamic access probabilities,
in addition to regenerating the broadcasting pro-
grams once the access probabilities change, we can
employ the algorithms in [35] and [36] to generate
broadcast programs.

4 TWO-PHASE ALLOCATION

4.1 Dimension Reduction Partitioning

To allocate the items in the broadcast database D into
K channels, we first propose an efficient algorithm DRP.
Algorithm DRP can be viewed as a top-down group-splitting
approach. Initially, there is only one group D. In each
iteration of DRP, a group is selected and split into two disjoint
subgroups, and the group number is increasing by one. DRP
continues until the number of groups reaches K. Since each
item contains two attributes, item size and access probability,
splitting a group Di into two subgroups, Dj and Dk,
optimally requires huge complexity because 2jDij possibilities
have to be considered. Therefore, in order to reduce
complexity, we use the benefit ratio, denoted as br, to model
the features of the data items. The benefit ratio bri of the data
item di is defined as the access probability divided by the
item size, i.e., bri ¼ fi

zi
. The reason for using the benefit ratio to

describe the feature of a data item is that in the heterogeneous
data broadcasting environment, the access probability

corresponds to the profit, whereas the item size corresponds
to the cost. The data item with a higher access probability and
a smaller item size will tend to be put in the broadcast
channel with a shorter broadcast cycle. The intuition of DRP
is to consider the ratio br instead of the item size and the
access probability. Therefore, the two-dimensional group-
splitting problem can be reduced to a one-dimensional
partitioning problem. Before describing algorithm DRP,
several definitions are given to facilitate the description.

Definition 1. The cost of the group Di is defined as

costðDiÞ ¼ ð
PNi

j¼1 f
ðiÞ
j Þð

PNi

j¼1 z
ðiÞ
j Þ, where variables Ni, f

ðiÞ
j ,

and z
ðiÞ
j are listed in Table 1.

Definition 2. MaxPQ is defined as a priority queue in which
each element belongs to a subset of D. When one is to remove
an element from MaxPQ, it will return the element with the
maximal cost. The method of returning the group with the
maximal cost, Dmax, is defined as ReturnMaxðMaxPQÞ.

The algorithmic form of DRP is outlined in Fig. 2. To
generate a broadcast program via algorithm DRP, all the
data items in the database D are first sorted according to the
br value in descending order. Initially, the database D is
viewed as an element stored in a priority queue MaxPQ. In
each iteration, MaxPQ returns the element with the largest
cost, i.e., Dmax. The returned element will be split by the
procedure Partition into two elements, which are disjoint
subsets of Dmax. The two elements are reinserted into
MaxPQ. At the end of each iteration, the number of the
elements in MaxPQ is increased by 1. Note that the
Partition procedure determines the most suitable point p to
partition the input sequence dx1; dx2; . . . ; dxNx

into two
subsequences dx1; dx2; . . . ; dxp and dxpþ1; dxpþ2; . . . ; dxNx

so
that the summation of the cost of the two sequences is
minimized. Algorithm DRP terminates when the number of
elements in MaxPQ reaches K. The allocation result will be

698 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 8, NO. 5, MAY 2009

Fig. 2. Algorithmic form of DRP.



obtained from the elements in MaxPQ, i.e., each item in the

same group is allocated to the same channel.

Lemma 1. The complexity of DRP can be expressed by

OðN logNÞ þOðK logKÞ þOðKNÞ.
Proof. We first note that the complexity of sorting all items

according to the benefit ratio isOðN logNÞ. Next, when the

DRP algorithm is executed, there are at most K iterations.

In each iteration, the complexity of returning Dmax is

OðlogKÞ, whereas the complexity of finding the most

suitable partition point is OðNÞ. Therefore, the overall

scheduling cost is OðK logKÞ þOðKNÞ. tu
Example 1. Consider the broadcast profile shown in Table 2.

A database containing 15 items should be broadcast via

five channels, i.e., N ¼ 15 and K ¼ 5. Before algorithm

DRP is executed, the data items are sorted according to

their br values in descending order. In the beginning, there

is only one data set D contained in the priority queue

MaxPQ, as shown in Table 3a. The cost of the data set can

be calculated from Definition 1, i.e., costðDÞ ¼ 135:60. In

each iteration, the data set with the maximum cost is

removed from MaxPQ, and two disjoint data sets are

inserted into MaxPQ. The best partition point is

determined by Procedure PartitionðDxÞ. In Table 3b, the

best partition point lies between d12 and d10. The original

data set is replaced with two disjoint item sets with their

corresponding cost 29.04 and 28.62, respectively. Like-

wise, in the next iteration, MaxPQ removes the data set

with cost ¼ 29:04 and inserts two disjoint subsets of the

removed data set, as shown in Table 3c. Algorithm DRP

terminates when the number of the elements in MaxPQ

reaches five. Table 3d shows the grouping result. Finally,

the broadcast program is generated according to the

grouping result, i.e., items in the same group will be put in
the same channel.

4.2 Cost-Diminishing Movement Selection

CDMS is a tuning mechanism, which is used to refine the
allocation result of algorithm DRP so that the local optimum
can be reached. The basic idea of CDMS is inspired by the
observation that the overall cost may either increase or
decrease when moving a data item from one group to
another in the allocation result of algorithm DRP. By
collecting the reduction information of all possible moving
operations, we can select the best one, i.e., the moving
operation leading to the maximum cost reduction, to
perform. Mechanism CDMS will be executed iteratively,
and the total cost is guaranteed to diminish after each
iteration. CDMS terminates when the local optimum is
achieved, i.e., no data item can be moved from one group to
another with the reduction of the cost. To facilitate the
description, several special terms are defined.

Definition 3. The aggregate probability of an item set Di,

denoted by Fi, is defined as the summation of the access

probability of all data items in Di, i.e., Fi ¼
PNi

j¼1 f
ðiÞ
j .

Definition 4. The aggregate size of an item set Di, denoted by Zi,

is defined as the summation of the item size of all data items in

Di, i.e., Zi ¼
PNi

j¼1 z
ðiÞ
j .

Consider a data item dx with its access probability fx and
item size zx. Let dx be moved from Dp to Dq. The total cost
before the moving operation can be derived from (3) as

cbefore ¼
XK
i¼1

XNi

j¼1

f
ðiÞ
j

 ! XNi

j¼1

z
ðiÞ
j

 !" #
¼
XK
i¼1

ðFiZiÞ:

Also, the total cost after the moving operation can be
derived as
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TABLE 2
Profile of the Broadcast Database

TABLE 3
Example of the Algorithm DRP

(a) The initial state of DRP. (b) The first iteration of DRP. (c) The second iteration of DRP. (d) The grouping result of DRP.



cafter ¼
XK

i¼1;i 6¼p;q
ðFiZiÞ

" #
þ ðFp � fxÞðZp � zxÞ

þ ðFq þ fxÞðZq þ zxÞ:

Therefore, the cost reduction �c, which represents the
amount of reduced cost after the moving operation is
performed, is obtained as

�c ¼ cbefore � cafter
¼ ½FpZp þ FqZq�
� ðFp � fxÞðZp � zxÞ þ ðFq þ fxÞðZq þ zxÞ
� �

¼ fxðZp � ZqÞ þ zxðFp � FqÞ � 2fxzx:

ð4Þ

Using the result in (4), we are able to estimate the cost
reduction before a moving operation of a data item is
performed. Therefore, we can select the best movement by
examining the �c of all possibilities. The algorithmic form
of mechanism CDMS is outlined in Fig. 3.

Given the allocation result, the goal of mechanism CDMS
is to find out the best moving operation that can result in the
maximum cost reduction. According to (4), we can estimate
the cost reduction �c of each possible moving operation
without performing it. The results of all possible moving
operations can be examined without moving the data items
back and forth. Each moving operation contains three
parameters: the original group Dorig, the destination group
Ddest, and the data item dorig, which is moved from Dorig to
Ddest. In each iteration of CDMS, the best moving operation
is selected after all possibilities are considered. At the end of
the iteration, the best moving operation is performed, and
the allocation result is updated. The next iteration is
executed according to the updated allocation result. The
total cost diminishes after each iteration is executed.
Mechanism CDMS terminates when no moving operation
can result in the cost reduction. The local optimum is thus

achieved. Note that in each iteration, the complexity of
mechanism CDMS isOðK2NÞ, where K and N represent the
number of broadcast channels and the number of dissemi-
nated items. Mechanism CDMS has two advantageous
features. First, from the viewpoint of the complexity,
mechanism CDMS can reach the local optimum in poly-
nomial time since �c must converge to zero within constant
iterations. Also, the iterative property, in which the moving
operation with the maximum cost reduction is selected, will
make mechanism CDMS give a progressive performance.

Example 2. Table 4 illustrates the procedure of mechanism
CDMS. Consider the grouping result of the Example 1, as
shown in Table 4a. The initial cost, denoted as cinit, is
24.09. The goal of each iteration of mechanism CDMS is
to find the moving operation for a data item from one
group to another, with the maximum cost reduction. In
Table 4b, according to the formula in (4), we find that
moving d10 from group 4 to group 2 will result in
�cmax ¼ 0:95. At the end of the iteration, such a moving
operation is performed. After that, in the next iteration,
the grouping result in the previous iteration is consid-
ered. Table 4c shows the grouping result in which d12 is
moved from group 3 to group 2, and the maximum cost
reduction �cmax ¼ 0:45 is achieved. Mechanism CDMS
continues until �cmax ¼ 0, which means that no more
data item can move from one group to another. There-
fore, the local optimum is achieved with cost 22.29.

5 DESIGN OF HYBRID GENETIC ALGORITHM

In this section, we develop another algorithm called
GA-CDMS to generate broadcast programs in a heterogeneous
broadcasting environment. Compared to DRP-CDMS,
GA-CDMS can overcome the problem of local optimum.
GA-CDMS is a hybrid genetic algorithm, which combines
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Fig. 3. Algorithmic form of the CDMS mechanism.



the conventional genetic algorithm and the proposed
mechanism CDMS. Although genetic algorithms have
proved to be a versatile and effective approach for solving
optimization problems [37], [38], there are still many
situations in which the simple genetic algorithm may result
in poor performances such as slow convergence and local
optimum (or premature) [39], [40], [41]. In order to overcome
such problems, the proposed hybrid genetic algorithm
GA-CDMS incorporates the local optimization (i.e., proce-
dure CDMS) in the loop of recombination and selection.
With the hybrid approach, mechanism CDMS is applied to
each newly generated chromosome to move it to a local
optimum state before being injected into the population.
Specifically, we use the genetic algorithm, on one hand, to
perform global exploration, and adopt mechanism CDMS,
on the other hand, to perform local exploitation around
chromosomes. Since the searching space of GA-CDMS is
bound by all local optimal solutions instead of all possible
solutions, scheme GA-CDMS outperforms the conventional
GA in accuracy and efficiency. In the following sections, we
will describe the design of GA-CDMS.

5.1 Chromosome Representation and Fitness
Evaluation

According to the problem formulation in Section 2, the
channel allocation problem can be transformed into a
grouping problem in which a database D with size N is
grouped into K different clusters. In order to satisfy the
feasibility, legality, and uniqueness of mapping a solution
(i.e., an allocation result) to a chromosome, we represent a
chromosome as an integer array with length N . Therefore,
a chromosome contains N genes. The locus (i.e., position of
a gene) represents the specific data item in D. The allele (i.e.,
value of a gene) identifies the group in which the data item
is put. It is obvious that each solution corresponds to a
distinct chromosome and vice versa. There is a fitness value
for each chromosome. Fitness is the measurement of the
quality of a chromosome. A genetic algorithm is designed to
search the chromosome with the highest fitness. Since the
goal of the grouping problem is to minimize the value of cost
in (3), the fitness function of a chromosome Ch is defined as

FitnessðChÞ ¼ 1
costðSÞ ; S is the corresponding broadcast

program of Ch.

Example 3. Fig. 4 gives an example of mapping a solution of
channel allocation to its corresponding chromosome
representation. Consider a broadcast program that
allocates data items d1 � d3 to channel c1, d4 � d6 to c2,
and d7 � d10 to c3. According to the above encoding rule,
in the corresponding chromosome, the values of the first
three genes that represent the items d1 � d3 are set to
be 1, while the next three alleles are set to be 2, and the
final four are set to be 3.

5.2 Crossover and Mutation

Crossover and mutation are the most frequently used

operators in the genetic algorithm. The crossover operator

progressively constructs near-optimal solutions, whereas

the mutation operator is used to increase population

diversity. These operators allow the search process to

explore the neighboring regions or to reach further

promising regions. The crossover operator achieves the

recombination of the selected individuals by combining the

segments belonging to the two different chromosomes in

parents. There are several ways to perform crossover. In this
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TABLE 4
Example of Mechanism CDMS

(a) The initial state of CDMS. (b) The first iteration of CDMS. (c) The second iteration of CDMS. (d) The grouping result of CDMS.

Fig. 4. The mapping of a solution and its corresponding chromosome.



paper, the uniform crossover [42] is adopted since it has the

advantage of combining features irrespective of their

relative position. The mutation operator is to change the

value of a single gene within a chromosome and assures

that the full range of allele values is available to the search.

In this paper, the mutation operator allows multiple genes

to randomly change their alleles with a uniform distribution

[43]. Fig. 5 illustrates the operation of crossover and

mutation.

5.3 Architecture of GA-CDMS

The architecture of the hybrid genetic algorithm GA-CDMS

is presented in Fig. 6. Initially, several randomly generated

solutions (i.e., grouping results) are encoded as the

chromosomes of the initial parents. By means of the

crossover and mutation operation, the offspring population,

which contains the chromosomes with better characteristics

than those in parents, is generated. After that, mechanism

CDMS is adopted to refine each chromosome in offspring as

a local optimal one. Regarding the chromosomes in both

offspring and parents as candidates, a new population is

reproduced by 1) picking out the chromosomes with higher

fitness and 2) eliminating others so as to keep the

population size constant. In the selection phase, well-

performed chromosomes will have better chances to

survive. We use roulette wheel method [44] to determine

the distribution of the probability of being selected. Note

that each chromosome is allowed to be selected repeatedly.

The population of the selected chromosomes will be viewed

as the parents in the next generation. GA-CDMS terminates

when all of the chromosomes in selecting candidates

converge to be identical. The corresponding grouping result

will hopefully be a global optimum solution. The major

advantage of algorithm GA-CDMS is that the searching

space is bound by all local optimal solutions instead of all

possible solutions. Therefore, algorithm GA-CDMS will be

more accurate and more efficient than GA.

6 EXPERIMENTAL EVALUATION

In this section, the performances of our two-phase

allocation and hybrid genetic algorithm are inspected

through a simulation study. The simulation environment

will be introduced in Section 6.1. In Section 6.2, we

compare our hybrid genetic algorithm GA-CDMS with a

simple genetic algorithm GA by analyzing their statistics.

In Section 6.3, we discuss the effectiveness of the relevant

algorithms by measuring the average waiting time Wb.

Finally, we will also discuss the efficiency of these

approaches in Section 6.4.
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Fig. 5. The illustration of crossover and mutation.

Fig. 6. The architecture of GA-CDMS.



6.1 Simulation Environment

Table 5 summarizes the definitions for primary simulation

parameters. For the small-range configuration,2 the number

of channels is varied from four to nine, whereas the number

of broadcast items is varied from 60 to 180. For the wide-

range configuration, the number of channels is varied from

4 to 12, whereas the number of broadcast items is varied

from 200 to 1,000. To reflect the access skew in the database

system, the access probabilities of queries are generated by

Zipf distribution [45] fi ¼ ð1iÞ
�=
PN

j¼1ð1jÞ
�, where � is a

skewness parameter, and 1 � i � N . Note that a large �

indicates the highly skewed access patterns in the mobile

computing environment. When � ¼ 0, the access probabil-

ities of the queries are uniformly distributed. By default, the

value of � is set to be 1 since it is observed in [46] that � is

usually larger than 1 for busy websites. The size of each

data item is represented by 10� units, where the value of �

is uniformly distributed over the interval ½0;��. The value

of � determines the exponent range of the item sizes. We

name it the diversity parameter. More specifically, in Table 5,

the value of � varies from zero to three. The case � ¼ 0

implies that all data items are of the same size (i.e., 1 unit).

When � ¼ 3, the size of each data item is located in the

interval ½100; 103� units. Note that the diversity of the item

size increases as the value of � increases. In the design of

the hybrid genetic algorithm GA-CDMS, the population size

(i.e., the number of chromosomes) in each generation is set

to be 100. The crossover probability and the mutation

probability are set to be 0.1.
During the experiments, we inspect the performances of

the following algorithms:

1. DRP, the DRP algorithm without optimization,
2. DRP-CDMS, the DRP algorithm with CDMS as the

optimization procedure,
3. GA-CDMS, the proposed hybrid genetic algorithm,
4. VFK [8], a greedy heuristic algorithm for homoge-

neous data items,
5. DP [4], a near-optimal dynamic programming

algorithm for homogeneous data items, and
6. Greedy [9], a greedy algorithm for homogeneous data

items.

Note that possible extensions for heterogeneous data
allocation are mentioned in [4] and [9]. We modify GREEDY
and DP accordingly for the heterogeneous data broadcasting
environment, i.e., ordering items by their br values in
descending order before partitioning.

6.2 Performance of Hybrid Genetic Algorithm

We first compare the performance of GA-CDMS to the
conventional genetic algorithm GA. Unlike GA-CDMS,
algorithm GA inherits the architecture in Fig. 6 except that
the block of CDMS is removed. During the experiment, given
a specific broadcast profile, algorithms GA and GA-CDMS
are executed 20 times with different initial conditions (i.e.,
different chromosomes in the initial parents in Fig. 6). Since
the genetic algorithm performs stochastic search, different
initial conditions may result in different solutions. For the
broadcast programs generated by these 20 experiments, we
measure the expected value and the standard deviation of
waiting time Wb. In Fig. 7, which shows the expected value,
we can observe that the proposed GA-CDMS can generate
the broadcast programs with a lower average waiting time.
On the other hand, in Fig. 8, which depicts the standard
deviation, the most significant observation is that the
standard deviation of GA-CDMS is very close to zero, which
is much lower than that of GA. This phenomenon implies
that given different initial conditions, algorithm GA-CDMS
will almost result in the same channel allocation, while the
allocation result of GA will depend on the initial condition.
Since GA-CDMS performs global search, the probability that
GA-CDMS results in a certain local optimum is quite low.
Therefore, it is very possible that the suboptimum generated
by GA-CDMS is an optimal solution.

6.3 Effectiveness Analysis

We next discuss the effectiveness of the relevant algorithms.
The quality of the broadcast program is determined by four
parameters: the diversity parameter ð�Þ, the skewness
parameter ð�Þ, the number of broadcast channels ðKÞ, and
the size of the broadcast database ðNÞ. Also, note that the
quality of a broadcast program is reflected by the average
waiting time Wb. In the following, we inspect the quality of
the broadcast program with different parameters varied.

Fig. 9a depicts the effect of the parameters K and N on
the average waiting time of algorithm DRP-CDMS.
Intuitively, the average waiting time increases as the size
of the broadcast database increases and decreases as the

TSAI ET AL.: ON CHANNEL ALLOCATION FOR HETEROGENEOUS DATA BROADCASTING 703

TABLE 5
Parameter Used in the Simulation

2. Since the genetic algorithm for global optimization suffers from
extremely high computing complexity, we only compare our algorithms
with the genetic algorithm to validate our algorithms on small data sets.



number of broadcast channels increases. Fig. 9b depicts the

effect of the parameters � and � on the average waiting

time. In the case of high diversity, the average waiting time

still decreases quickly when data skewness grows.
Next, we discuss the diversity issue of the proposed

algorithms. As shown in Fig. 10, when the diversity

increases, the average waiting time of each approach

increases drastically. The reason is that the average size of

a data item increases in highly diverse environments.

Since the bandwidth still remains the same, it takes more

time to disseminate each data item. In Fig. 10, the

performances of VFK , GREEDY, DP, DRP, and DRP-

CDMS are very close to GA-CDMS when the value of � is

low. Algorithm VFK , which is an algorithm suitable for

the homogeneous broadcasting environment, only considers

the access probability of each data item. DP and GREEDY

are originally designed for the homogeneous broadcasting

environment. Possible extensions for heterogeneous data

allocation are mentioned without experiments. We modify

their algorithms accordingly in our experiments, i.e.,
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Fig. 7. The expected value of waiting time (a) as K varied and (b) as N varied (small-range configuration). (a) Expected Wb with K varied.

(b) Expected Wb with N varied.

Fig. 8. The standard deviation of waiting time (a) as K varied and (b) as N varied (small-range configuration). (a) Standard deviation with K varied.

(b) Standard deviation with N varied.

Fig. 9. The expected value of waiting time (a) as N and K varied and (b) as � and � varied. (DRP-CDMS, wide-range configuration.) (a) Wb versus
K and N. (b) Wb versus � and �.



ordering items by their br values instead of access
probability. In the heterogeneous broadcast environment,
VFK; DP, and GREEDY suffer from effectiveness issues
and result in poor performance. In the case of a high �, it
is obvious that our approaches outperform algorithm
VFK , GREEDY, and DP. Moreover, when the diversity of
page sizes is large, e.g., � ¼ 3, the average waiting time of
DRP-CDMS is about 10 percent and 15 percent lower than
that of DRP for the small-range and wide-range config-
urations, respectively. As shown in Fig. 10a, the local
optimal points that DRP-CDMS achieves are still very
close to the qualities that GA-CDMS achieves. This
experiment shows the necessity of developing algorithms
suitable for the heterogeneous data broadcasting environ-
ment because the algorithm used in the homogeneous
environment is no longer suitable in this environment.

As depicted in Fig. 11, this experiment shows the
average waiting time of each approach as the skewness
parameter � varies. A larger value of � implies the more
skewed access probabilities of the data items. The average
waiting time of GREEDY is close to DRP in the case of a
high �. In addition, although DP achieves a near-optimal
allocation in a homogeneous environment, Greedy outper-
forms DP in the heterogeneous environment when the
access probability is more skewed. There are several
observations made. First, the average waiting time of each
approach decreases as the skewness parameter increases.

This is because of the fact that the degree of request locality
is high when the access probability is highly skewed. The
system can put the data items with higher access
probabilities together into a channel with fewer items in
order to reduce the average waiting time. Second, the
discrepancy of the proposed approaches compared to GA-
CDMS becomes subtle. The reason is that under the same
diversity, the increase of the skewness will make the access
probabilities of data items dominate the channel allocation.
The channel allocation will be more precise when one
feature (i.e., access probability) of each item is more
important than the other (i.e., item size).

Fig. 12 depicts the effect of the parameter K. In this
experiment, we observe that the average waiting time
decreases as the value of K increases for all listed
approaches. It is found that VFK suffers from scalability
issues since the discrepancy of VFK compared to GA-
CDMS increases when K increases. Compared to VFK , the
DRP algorithm can achieve satisfactory quality. The
performance of DRP can be refined to the local optimum
by employing the CDMS mechanism. By observing the
average waiting time, the error between DRP-CDMS and
GA-CDMS is less than 3 percent in most of the situations.
The error will become even insignificant as the value of K
increases because the increase of the number of channels is
helpful for distributing the data items. There is another
interesting observation. DRP has excellent performance
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Fig. 10. The expected value of waiting time as � varied. (a) Small-range configuration. (b) Wide-range configuration.

Fig. 11. The expected value of waiting time as � varied. (a) Small-range configuration. (b) Wide-range configuration.



without adopting CDMS when K ¼ 4 and K ¼ 8. That is,
the improvement of DRP-CDMS is subtle compared to DRP
when K ¼ 2n, where n belongs to integers. It is because
DRP partitions one channel into two to minimize the
average waiting time of these two channels. When the
channel number can be expressed as K ¼ 2n, where n
belongs to integers, the data items can be evenly distributed
into K groups.

Next, if we fix the value of K and vary the number of
broadcast items, the observed performances is depicted in
Fig. 13. When the number of broadcast items increases, the
average waiting time for each approach increases. This
phenomenon also agrees with our intuition since each
channel should disseminate more items. Here, the proposed
DRP and DRP-CDMS still result in better qualities than VFK ,
GREEDY, and DP consistently. By observing the perfor-
mances of DRP-CDMS asN varied in Fig. 13a, we can see that
the results are still very close to the quality of GA-CDMS. The
qualities of DRP and DRP-CDMS are not affected as the value
ofN increases. Therefore, it is shown that mechanism CDMS
is scalable so that the quality can be maintained when larger
numbers of data items are broadcast.

6.4 Efficiency Analysis

In the final section, we discuss the efficiency among all
approaches. Since we implement these approaches by Java
language and execute the programs under the same system
platform, the execution time of the program will reflect the
relative efficiency. We use millisecond as the unit of
execution time. Since the parameters � and � do not affect

the complexity, in this experiment, we only consider the
parameters K and N . Fig. 14 shows the execution time of
each approach as the number of channels K varies, while
Fig. 15 depicts the execution times as N increases.
Compared to GA-CDMS, algorithm DRP-CDMS spends
much less time generating broadcast programs. The execu-
tion time of the GA-CDMS increases as K or N increases.
Note that the execution time of GA-CDMS is more sensitive
to N than to K. The reason is given as follows: The
GA-CDMS is implemented based on the hybrid genetic
algorithm. The increase of N will increase the length of each
chromosome, while the increase of K only changes the
variety of the gene value in a chromosome. Moreover, the
execution time of DRP-CDMS is about 2.5 to 35.5 times
higher than that of DRP as K is varied from four to nine,
whereas the execution time of DRP-CDMS is about 12.5 to
20 times higher than that of DRP as N is varied from 60
to 160. Without CDMS, the execution cost of DRP is similar
to VFK . Obviously, DRP-CDMS provides a broadcast
program with a higher quality at higher execution cost.
By observing the above two figures, we find that although
the GA-CDMS can achieve the best solutions, it is
computationally prohibitive. Compared to GA-CDMS, the
proposed algorithms are still very efficient whether the
CDMS optimization procedure is employed or not. There-
fore, the proposed DRP and DRP-CDMS are very suitable
for generating broadcast programs practically. As men-
tioned earlier, since DRP-CDMS achieves the local optimal
solution, which is very close to the global optimal, to
generate the broadcast program with high quality, we
suggest that the DRP-CDMS approach should be employed.
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Fig. 12. The expected value of waiting time as K varied. (a) Small-range configuration. (b) Wide-range configuration.

Fig. 13. The expected value of waiting time as N varied. (a) Small-range configuration. (b) Wide-range configuration.



7 CONCLUSION

In this paper, we focus on generating broadcast programs
in a heterogeneous data broadcasting environment. The two-
phase channel allocation approach is proposed in the paper.
First, we propose algorithm DRP to perform the rough
allocation. After that, we also use a mechanism called
CDMS to refine the result of DRP to the local optimum.
Moreover, a hybrid genetic algorithm GA-CDMS is also
proposed for comparison purposes. In order to verify the
performance, several experiments are conducted. In these
experiments, we consider the important issues such as
accuracy, scalability, diversity, and complexity. From the
experimental results, we show that the proposed two-phase
channel allocation is very practical in performing an
effective channel allocation efficiently in a heterogeneous
broadcasting environment.
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